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The chemistry of transition metal dinuclear complexes bridged
by a methylene has been extensively studied.1 Several examples
of base-free borylene-bridged dinuclear complexes were reported
recently, in which the borylene works as a tricoordinated planar
ligand and is stabilized by aπ donor amino group, alkoxy group,
chlorine, or a bulkytert-butyl group.2 Borylene-capped trinuclear
complexes [(Cp*Co)3(µ-H)2(µ3-BX)2] (X ) H, Cl),3 [(Cp*Co)3-
(µ-H)2(µ3-BH)(µ3-BX)] (X ) Cl, OH),3b and [(CpCo)3(µ3-BPh)-
(µ3-PPh)]4 are also known. In sharp contrast to this, no chemistry
has been known for dinuclear complexes bridged by nonsubsti-
tuted borylene-Lewis base adducts BH‚L, which are the iso-
electronic boron counterparts to methylene. We have found that
B2H4‚2PMe35 (1) is fragmented into BH3‚PMe3 and BH‚PMe3 in
the reaction with Co2(CO)8 and the generated BH‚PMe3 fragment
acts as a bridging ligand in the product [{Co(CO)3}2(µ-CO)(µ-
BH‚PMe3)] (2).
Treatment of Co2(CO)8 with ca. 2-fold excess of1 at-15 °C

in hexane afforded a yellow-orange solution, from which2 was
isolated as yellow crystals in 66% yield.6 The amount of evolved
CO was estimated to be 0.8 equiv to the precursor Co2(CO)8 with

use of a Toepler pump. During the reaction, BH3‚PMe3 was
generated and removed by sublimation. Thus, the reaction occurs
as shown in eq 1. Complex2 is moderately stable at room
temperature under a nitrogen atmosphere in the pure state.

Bis(trimethylphosphine)diborane(4),1, has been known to
coordinate to a metal center through the vicinal H(B) atoms to
produce chelate compounds or through one M-H-B bond to
form unidentate complexes: [ZnCl2(B2H4‚2PMe3)],7 [Ni(CO)2-
(B2H4‚2PMe3)],8 [CuI(B2H4‚2PMe3)],7 [Cu(B2H4‚2PMe3)2]X (X
) Cl, I),9 and [M(CO)n(B2H4‚2PMe3)] (n ) 4, M ) Cr, Mo, W;
n) 5, M) Cr, W).10 In these complexes, however,1 is included,
retaining the original form in the coordination sphere. The present
work is the first example of the degradation of1 in the reaction
with transition metal complexes.
An ORTEP diagram of2 is shown in Figure 1.11 The two

Co(CO)3 moieties are symmetrically bridged by the carbonyl and
borylene ligands. The dihedral angle between the two three-
membered rings, B-Co(1)-Co(2) and C(4)-Co(1)-Co(2), is
110°. Coordination of the lone electron pair of the phosphorus
atom of trimethylphosphine to the boron atom in the borylene
ligand induces boron to adopt a pyramidal geometry. The angle
between the B-P bond and the B-Co(1)-Co(2) three-membered
ring is 130.4° while the angle between the B-H(B) bond and
the three-membered ring is 118.1°. The former is enlarged and
the latter is narrowed from the calculated value for the ideal
tetrahedron (125.3°), probably due to the steric demand of PMe3.
The Co(1)-B and Co(2)-B bond lengths are 2.112(9) and 2.108-
(11) Å, respectively. These are considerably shorter than that
found in the boryl complex [Co(CO)2(η1-dppm)(µ-dppm‚BH2)]
(2.227(6) Å).12 However, they are longer than those in cobal-
taborane clusters withµ3-borylene ligands, [(Cp*Co)3(µ-H)2(µ3-
BH)2] (2.013(8) and 1.985(6) Å)3aand [(CpCo)3(µ3-PPh)(µ3-BPh)]
(2.018(8)-2.065(8) Å).4 The interatomic distance Co(1)-Co-
(2) of 2.486(2) Å clearly indicates the existence of a single bond
between the cobalt atoms. This distance is slightly longer than
that in theµ-carbene dicobalt complex [{Co(CO)3}2(µ-CO)(µ-
C4H2O2)] (2.451 Å)13 but shorter than those in germylene-bridged
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complexes [{Co(CO)3}2(µ-CO)(µ-GeRR′)] (2.491-2.587 Å; av
2.55 Å)14 and the tricobalt complex capped by a borylene and a
phosphinidene [(CpCo)3(µ3-PPh)(µ3-BPh)] (2.473(2)-2.561(1) Å;
av 2.53 Å).4 These differences are attributable to the size of the
bridging atoms. The Co-Co distance in [(Cp*Co)3(µ-H)2(µ3-
BH)2] is 2.507(1) Å;3a however, a comparison of2 with this
trinuclear complex is rather difficult because of the existence of
two borylene bridges as well as bridging hydrido ligands.3b

In the11B NMR spectrum of2, the bridging borylene resonates
at considerably lower field (17.5 ppm) than the precursor1 (-37.4
ppm) and BH3‚PMe3 (-37.0 ppm). Similarly, the chemical shift
of 2 is also higher (lower field) compared to that of a boryl

complex Cp*W(CO)3BH2‚PMe3 (-27.6 ppm).15 This phenom-
enon is parallel to the fact that the signal of the carbene ligand in
µ-carbene complexes is observed at remarkably low field in13C
NMR spectroscopy.1,16 It should be noted that base-freeµ-bo-
rylene complexes [{(η-C5H4R)Mn(CO)2}2(µ-BX)] (R ) H, Me;
X ) NMe2, NHR′, OR′, Cl, t-Bu) recently reported by Braun-
schweig and co-workers exhibit the11B signals at extremely low
field (97.6-107.6 ppm for X) NMe2, NHR′, OR′; 133.5 ppm
for X ) Cl, and 170 ppm for X) t-Bu).2 The 1H NMR signal
of B-H in 2 is also found at low field (4.59 ppm).
Kodama and Kameda previously reported borane-cage expan-

sion reactions using1. In the reactions, the frameworks of boranes
are expanded by the introduction of BH‚PMe3 derived from the
fragmentation of1. Thus, diborane(6) reacts with1 to give B3H7‚-
PMe3 releasing BH3‚PMe3 via an ionic intermediate [B3H6‚2PMe3]-
[B2H7] (eq 2).17

Some boranes release a Lewis base during the reaction (eq 3).18

In the present case,1 gives the dicobalt framework a BH‚PMe3
moiety to afford 2, which can be regarded as a trinuclear
metallaborane. In this aspect, the reaction reported here corre-
sponds to the borane expansion reactions with1.
Complex2 undergoes ligand substitution with 2 equiv of PPh3

to afford [{Co(CO)2(PPh3)}2(µ-CO)(µ-BH‚PMe3)].20 Investiga-
tion of reactions of2 with other substrates is in progress toward
syntheses of new compounds containing a boron moiety.
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Figure 1. ORTEP diagram of [{Co(CO)3}2(µ-CO)(µ-BH‚PMe3)] (2) with
thermal ellipsoids at the 30% probability level. Selected bond lengths
(Å) and angles (deg): Co(1)-Co(2) 2.486(2), Co(1)-B 2.112(9), Co-
(2)-B 2.108 (11), B-P 1.921 (10), B-H(B) 1.02(7); Co(1)-B-Co(2)
72.2(3), B-Co(1)-Co(2) 53.8(3), B-Co(2)-Co(1) 54.0(3), Co(1)-
C(4)-Co(2) 81.8(4), P-B-Co(1) 119.9(5), P-B-Co(2) 123.2(5), H(B)-
B-Co(1) 122(4), H(B)-B-Co(2) 117(4), P-B-H(B) 102(4).
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